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Abstract: Viscous equations are developed for 
regions with two interacting flowing fluids, or 
two fluid phases, such as occur in fluidized 
particle beds or the mixing of fluids. The 
descriptive equations are rendered into the 
standard COMSOL PDE matrix form, and 
solved over typical two-dimensional regions, as 
time-dependent interacting laminar flows. The 
model geometry selected is that of a, so called, 
spouted fluidized bed in which a two-
dimensional jet of gas is injected into a bed of 
particles.  The resulting interface shear stress 
between the gas and the particles is modeled 
with a typical shear parameter, and viscous 
effects are included in the viscous terms with 
effective viscosities.   The results show the effect 
of the developing jet, the particle circulation, and 
the distribution of the void fraction. 
 
Keywords: CFD, two-phase, laminar flow, 
fluidized bed. 
 
1. Introduction 
 

Regions with two interacting flowing fluids, 
or fluid phases, occur in many important 
applications, ranging from fluidized particle beds 
to the mixing of fluids.  Such regions are 
notoriously difficult to model because the 
intermingling of one phase with the other 
introduces effective compressibility into the 
otherwise incompressible descriptive differential 
equations; few CFD software packages have 
capability for more than a single phase. 

Traditionally, model equations have been 
mostly inviscid with various empirical terms 
accounting for compressibility and inter-fluid 
shear, such as the pioneering work of Gidaspow 
and his students1, 2; these were usually solved 
with finite difference approximations over 
simple regions, and sometimes by method of 
characteristics as for hyperbolic equations and 
compressible flow.  More recent formulations 
include general viscosity, and even turbulence 
models3, 4 The inclusion of (constant) viscosity 
renders the equations elliptical in space as the 
NS equations; however, problems with bounded 
sensitivities can cause integration difficulties. 

A particular advantage of the COMSOL 
software is that it is not restricted to packaged 
model equations nor simple geometries, but 
allows the direct input of “custom” model 
equations for finite element approximations over 
complex regions.  Here, two-dimensional, 
interacting viscous equations for two-phase 
fluids are derived in transport format, and 
rendered into the general PDE form that allows 
direct input to the COMSOL Finite Element 
software.   

The model geometry selected is that of a, so 
called, spouted fluidized bed in which a two-
dimensional jet with particles is injected into a 
volume.  This causes shear stress between the 
gas and the particles, thus driving the particles in 
a circulation cell, a behavior that can be 
important for various chemical and thermal 
processes.  The results show the effect of the 
developing jet, the particle circulation, and the 
distribution of the void fraction. 
 
 
2. Problem Formulation 
 

The viscous equations for two-phase flows 
are very close to the standard Navier-Stokes 
equations, except for the void and solid fractions 
that affect the working densities, and for the 
inter-phase shear.  Usually, these mass and 
momentum relations are stated in conservation 
form1-4; however, for COMSOL implementation, 
it is convenient to state them in the usual 
transport form, as shown in Appendix A for 
constant gas- and solid-phase densities, ρg and ρs.  
These are 6 equations to solve for ug, vg, us, vs, p, 
and ε, with σ = 1 – ε. 

The momentum equations (2) and (3) will be 
recognized as close to the usual NS equations, 
but with effective densities, ερg and σρs, where ε 
is the void fraction and σ = 1 – ε is the solid 
fraction (these fractions appear in the mass 
equations (1) and cause compressibility effects).   

The viscous terms in (2) and (3) frequently 
include normal stress effects3,4; however, to 
simplify and demonstrate feasibility of approach, 
viscosity is limited here to the usual shear-
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effects, with gas- and solid-phase viscosities, ηg 
and ηs.   

The inter-phase friction coefficient, β 
[kg/s.m3], is usually based on the Ergun 
equation1-4, which is an empirical correlation of 
drag effects on the particles, and a strong 
function of void fraction; typical values are 
shown in Fig. 1: 
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Figure 1. Inter-phase friction parameter β [kg/s.m3] 
as a function of void fraction.  

 
For the purpose of demonstrating computational 
feasibility, β is here treated as a known 
parameter.   

Usually, all second-order terms require two 
boundary conditions in elliptical equations; 
however, the presence of the algebraic β-terms 
has an important effect on boundary conditions:  
If both ug and us are specified, for example, then 
the β-terms introduce an algebraic constraint that 
may be extraneous and difficult to meet; 
therefore, where ug is specified at an inlet 
boundary, us will be left unspecified.  

The COMSOL general PDE form is given by 
Ftuda

rrr
=Γ•∇+∂∂ )/(  

where the da’s are coefficients (e.g., densities), Γ 
is a matrix of the terms with the highest 
derivatives (i.e., the viscous terms), and F is a 
vector of forcing functions (here including 
convective terms). To facilitate input to this 
form, the descriptive equations are written in 
matrix form in Appendix B, where the comma 
denotes partial differentiation.   
 
3. Computational Results 

The test problem under consideration is an 
80 cm wide by 2 m high (long) trough with a 20 
cm inlet slot at the bottom (left), shown on its 
side in Fig. 2a with laminar NS flow: 

 
 

Figure 2a. Test-problem geometry with single-fluid 
steady-state Navier-Stokes flow(max/min = 10/0 m/s). 

 
3.1 Qualification  

As a prelude to two-phase flow, and to 
qualify the programming, the steady-state flow 
distribution for a single-phase gas was 
determined, as shown in Fig. 2a, using the 
COMSOL Navier-Stokes solver.  The gas 
properties are ρg = 1 kg/m3, ηg = 1 cPa.s, and the 
jet inlet is specified parabolic laminar flow with 
a center-line velocity of 10 m/s, which 
corresponds to an inlet Reynolds number of 400.   

In a time-dependent calculation, starting with 
the trough gas at rest, the flow field in Fig. 2b 
was reached in 350 ms. 

 

 
 
Figure 2b. Test-problem geometry with single-fluid 
time-dep. Navier-Stokes flow (max/min = 10/0 m/s).  
  
 If the above problem is simulated by setting 
the inter-phase shear to a small number (β = 
0.001 kg/s.m3), and integrating the two-phase 
equations in Appendix B, then at t = 350 ms the 
pattern in Fig. 3 is reached. 
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Figure 3. Test-problem geometry with two-fluid time-
dependent flow and small inter-phase shear (max/min 
≈ 10/-4 m/s).  
 
It is seen that the penetration is similar to the NS 
solution at 350 ms, but that there is a shock-like 
sharp boundary beyond which a negative axial 
flow develops; at this front the arrows show that 
the stream directions meet and feed into the 
circulation by the jet boundary.  During the flow 
development, the sharp front was seen to proceed 
from the left entrance (gravitational bottom) in a 
steady fashion.  This flow field is a consequence 
of the varying void fraction, and its effect on the 
mass equations; it is not possible in the NS  flow 
in Fig. 2 where the gas flow exits the right (top 
of the trough) because it would violate 
conservation of mass.  In both calculations, 
Neuman conditions (or zero slope) were 
specified for the velocities at the “outlet”, and 
the pressure and void fraction were specified. 
  
3.2 Two-Phase Results  

In experiments with spouted beds, it has been 
found difficult to start up with a packed bed, and 
then forming the desired gas jet into it; instead, 
startup begins with gas flow into the volume and 
gradual addition of solid phase5.  This approach 
is modeled here with the inlet solid fraction 
increasing from 0 to 35% over 300 ms, as shown 
in Fig. 4.  The inlet gas velocity is parabolic 
laminar flow with a peak velocity of 10 m/s; the 
solids velocity is unspecified, but determined 
from the shear parameter, set at β = 10 kg/s.m3.  
The (computational) gas is very viscous with ηg 
= 1 cPa.s (10 centipoise); ρg = 1 kg/m3, which 
yields an inlet Reynolds number of 400; the solid 

phase is taken as 20 times this density, and 100 
times the viscosity (ρs = 20 kg/m3, ηs = 1 Pa.s).  
It is noted that these are model fluids for the 
computation; the high viscosity facilitated 
convergence of the time steps. 

    

 
Figure 4. Inlet Solid Fraction. 

 
 The axial gas and solids velocity fields 

for these conditions, and at t = 1 s, are shown in 
Figs. 5a and 5b,  along with corresponding 
streamlines and direction arrows.  

 

 
Figure 5a. Gas axial velocity at t = 1 s, for ug,in = 10 
m/s and β = 10 kg/s.m3 (max/min ≈ 10/-1 m/s).  
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Figure 5b. Solids axial velocity at t = 1 s, for ug,in = 
10 m/s and β = 10 kg/s.m3(max/min ≈ 0.2/-0.5 m/s). 
It is seen in Fig. 5a that the inlet jet penetrates 
only a short distance, surrounded by gas 
recirculation inside the flow-front.   This 
penetration proceeded smoothly from the inlet to 
the present location in about 350 ms; thus, at t = 
1 s, these distributions are close to a steady state.   

In Fig. 5b, the positive solids velocity, us 
(dragged along by ug) has a maximum of about 
0.2 m/s, but a larger negative value (where ug is 
small) due to gravity and higher density.   
Although flow appears to exit the side walls, 
these have specified zero slip and normal 
velocities, and ug, vg, us, and vs are all zero here. 

The flow-reversal front corresponds to a 
relatively rapid change in pressure, as shown in 
Fig. 5c; as seen, the pressure is near constant 
behind the front (red color), but is reduced in 
front of it (yellow to blue) until zero at the top. 
 

 
Figure 5c. Pressure field at t = 1 s, for ug,in = 10 m/s 
and β = 10 kg/s.m3. 
 
The corresponding solid fraction is shown in Fig. 
5d, the inlet peak being 35%; it shows a similar 
penetration as the gas velocity in Fig. 5a. 
 

 

Figure 5d. Solid fraction, σ, at t = 1 s, for ug,in = 10 
m/s and β = 10 kg/s.m3 (max/min ≈ 0.35/0). 
The flow in a horizontal jet (with gravity “turned 
off”) is show in Fig. 6, where the flow proceeds 
uniformly from inlet to outlet.  
 

 
Figure 6. Gas horizontal velocity at t = 1 s, for ug,in = 
10 m/s and β = 10 kg/s.m3 (max/min ≈ 10/0 m/s).  
 

As a final calculation, the inlet velocity was 
changed to 25 m/s, or Rein = 1,000.  The result 
for a vertical trough is shown in Figs. 7a and 7b. 

 
Figure 7a. Gas axial velocity at t = 1 s, for ug,in = 25 
m/s and β = 10 kg/s.m3 (max/min ≈ 25/0 m/s).  
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Figure 7b. Solid fraction, σ, at t = 1 s, for ug,in = 25 
m/s and β = 10 kg/s.m3 (max/min ≈ 0.35/0). 
Here it is seen that some solid phase extends 
nearly to the outlet, and that the flow proceeds 
positively to the exit due to the higher jet 
momentum.  However, when the shear was 
changed to β = 100 kg/s.m3 shorter jet 
penetration and flow reversal occurred, with a 
distribution similar to Fig. 5a.  A calculation 
with β determined from Fig. 1 became unstable 
after only a few milliseconds. 
 
4. Discussion 
 

The present results demonstrate the solution 
of two-phase transport equations using the 
COMSOL PDE modeling and the built-in Finite 
Element solvers.   These transport equations 
appear similar to the single-phase NS equations, 
and therefore would appear to be solvable by the 
same techniques; however, inclusion of the void 
fraction as a variable introduces added degrees of 
freedom that can cause compressibility effects, 
as shown in Figs. 5.     

In particular, the results are sensitive to the 
coupling parameter, β, in relation to the inlet jet 
boundary condition.  Many integration attempts 
included inlet conditions on both the solid- and 
the gas-phase; however, the problem then 
appeared to be over-constrained by the algebraic 
coupling parameter, β.  Better convergence was 
achieved by eliminating the solid-phase 
condition. 

Inlet gas flows larger than 25 m/s (Rein > 
1,000) were also attempted, but without 
convergence.  Laminar flows become physically 
(and numerically) unstable at these Reynolds 
numbers;  applications with higher jet velocities 
will likely require a turbulence model in the gas 
phase, including law-of-the-wall variables.  

Larger values of β tended to further attenuate 
the inlet jet penetration.  In the present model 
problem, the largest velocity difference is at the 
inlet, causing a very large β-value there when the 
correlation in Fig. 1 was used; in this case there 
was practically no flow development with the 
instantaneous initial inlet gas velocity specified. 

Inclusion of viscosity in the model equations 
renders the equations elliptical in space (and 
parabolic in time), which is well suited to the 
finite element solution techniques.  However, 
normal gas viscosities are too small to achieve 
convergence of the time steps (at least for ug,in = 
10 m/s), and therefore were increased for the 
computational gas.  Another problem presents 
itself as the very large solid-phase density 
(usually > 1,000 kg/m3), in comparison to that of 
the gas.  The gravitational forces on this phase 
are very large, and exceedingly small time 
increments would be required to obtain 
solutions. 

 
5. Conclusions 
 

This paper has examined the use of  the 
COMSOL finite element modeling technique for 
laminar two-phase flows, as applied to a spouted 
fluidized-bed type geometry.    By placing the 
transport equations in the PDE matrix form, 
direct input to the software was achieved, and 
solutions obtained with built-in solvers.   

Further two-phase modeling should evaluate 
normal stress effects in the solid phase, and 
turbulence modeling in the gas phase, as well as 
extending the analysis to three dimensions. 
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Appendix A:  Transport Equations 
 
Conservation of Mass 
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Gas-Phase Momentum Equations 
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Solid-Phase Momentum Equations 
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Appendix B:  COMSOL Input PDF Equations 
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